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THE FLOW T'IELD ABOUT THE MUZZLE OF AN M-16 RIFLE

ABSTRACT

An experimental technique is developed which permits the obtaining
of detailed time-displacement histories of observable discontinuities in
the muzzle gas flow fields that foxrm about weapons during firing. The
technique is applied to the flow from the muzzle of an M-16 rifle firing
standard ball ammunitiorn. Data is presented both as full discontinuity
¢ ntenes and as discontinuity trajectories along the axis of symmetry.
T..e fummer indicate the details of muzzle jet-free air blast coupling;
while the latter demorstrate the applicability of analytical techniques to
the flow field. Additionally, a data reduction scheme is proposed which
permits the inference of property values in the flow based on a combination
of empirical and anal;'tical techniques.
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. I. INTRODUCTION

The gases discharged from the muzzle of a gun durirg firing affect
projectile motion, determine the magnitule of blast and flash generated,
and provide the medium in which muzzle attachments are immersed Thus,
the muzzle gas flow field directly effects accuracy, crew safetv and
eff. iency, firing signature, and weapon functioning. Previous surveys
of this flow consist of qualitative optical experiments coupled with
theoretical analyses based on existing blast and steady, supersonic jet
theories. Recently, considerable effort has been invested in the appli-
cation of finite difference techniques to the computation of the detailed,
tine dependent properties of the propellant gas flow field as it expands .
around the projectile into the surrounding atmosphere. In order to in-
vestigate the validity of the predictions of thes: and other computational
techniques, a bedy of juantitative experimental data is required. ‘lnis
report presents the results of an experimental survey of the phenomena
occurring at the muzzle of a 5.56mm M-16 rifle during firing. Since the
techniques applied are based on approaches taken by previous researchers,
it is useful to briefly review this work.

*

Cranz1 reports using spark schlieren techniques to obtain photo-
graphs of the muzzle gas flow field about a rifle in 1911. The sequences
of photographs produced show the levelopment of the precursor flow field
formed by the air in the tube beinyg forced out ahead of the projectile.
This is followed by the projectile s.naration from the muzzle resulting
in the release of the high pressure prcpellant gases. Subsequent photo-
graphs trace the development of the strong air blast and the propellant
gas jet, schematically illustrated in Figuie 1. At later times, the
decay of the propéllant gas jet due to the e.ntying of the gun tube is
shown. Cranz rzcognized the qualitative natui: of these photographs and
0 ‘ attempted to obtain quantitative data by probing the muzzle jet2?. His
< technique consisted :f inserting conically tipped vrobes iato the muzzle
o jet and taking spark schlieren photographs of the si.ock stiucture sur-

) rounding the probe tips. From the measured shock angle, the flow Mach
number may be calculated using inviscid flow theory. However, in a
similar effort to probe a steady, supersonic air jet, Ladenburg3 noted
the strong influence of the jet shock structure on the accuracy of this
probing technique. Ladenburg concluded that the effect of hock~boundary
layer interactions on the probes produced significart deviati-as from
predictions of inviscid flow theory. The data of Cranz and Gl tzel?
reflect this situation. The velocity fields they show demonstreste strong
anomalies in the vicinity of shock waves.
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Cranz! noces that within the strong air blast forred at project’ le
separation the propellant gases expand from the muzzle exhibiting the
flow structure of a superscnic, underexpanded jet. Thereford to cbtain
a better understanding of the propellant gas flow field, Cranz turn:d
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to investigations of steady jet structures. Cranz observes that the
linearized theory of Prandtlt qualitatively predicts the behavior of the
propellant gas jet. 1In particularc, he notes that once the jet shock
structure has grown to its maximum size, the subsequent decay of the jet
as the gun tube empties results in “he Mach dise’ moving in toward the
muzzle. Linearized theory predicts a variation in the characteristic
wavelength of a supersonic jet that is proportional to the square root

of the exit to surroundings pressure ratio. Thus, as the muzzle pressure
decays, the jet structure collapses toward the muzzle.

‘i*2 work of Cranz is typi..:i of subsequent researck into muzzle
phenomena. Optical techniques are applied to obtain photographs of the
muzzle gas flow field. Examination of the photographs shows that the
muzzle exhaust goes through an initisl period when the propellant gas
jet and free air blas* form in a highly unsteady, coupled manner. At
later times, the blast moves sufficiently far from the muzzle vregion
and becomes uncoupled from phenomena occurring there. During this late”
time, the propellant gases exhaust into a nearly undisturbed atmosphere.
The structure of the propellant gas flow during this period is that of a
supersonic, underexpanded jet. With the observation that over a sig-
nificant portion of the exhaust cycle the muzzle gas flow has a typical
jet structure, it becomes convenient to model the flow field using the
techniques of steady jet or plume theory. This approach hac been suc-
cessfully used to model the flow over muzzle devicesb-11, However, the
gasdynamic loadings on the projectile in the muzzle gas flow are applied
at very early times, and the applicability of the steady jet theory must
be established.

Oswatitsch!2 examines this problem and notes that the initial unsteady
expansion of the muzzle gases could be modeled as a spherical blast.
Using the method of characteristics, he computes the blast field that
would be generated about the muzzle of a gun. He observes that in the
region between the muzzle and the second or inward-facing shock, temporal
variations in flow properties occur at a rate ;roportional to the change
in the muzzle properties. Since the muzzle properties change slowly
relative to the time scales of the blast field growth and project’le
residence in the muzzle region, Oswatitsch concludes +%:ai *his region,
between the muzzle and the inward facing shock, may be g~ =imately
modeled by steady jet theory. He further notes that sir. <~¢ hlchest
pressures exist in the neighborhood of a few calibers of the .ur .e,
loadings on the projectile may be approximated by computiayg u projectiie
motion through a steady jet flow field.

The model proposed by Oswatitsch neglects certain important features
of the muzzle gas fiow. Among them are the effects of initial pro-
pellant gas expansion between the base of the projectile and the muzzie
rim avJd the effects of interactions between the precursor and propcllant
gas flows. Sincc these features occur near the muzzle where gas pressures
are maximum, 2 more exact treatment of this portion of the problem would
appear ju-tified. Amother problem that steady jet theory can not treat
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is the details of the development of the air blast. Since the initial
growth of the blast is directly coupled tc the growth of the propellant
gas jet, any attempt to construct a model of the air blast in the imme-
diate vicinizy of the weapon would require informaticn on the nature of
this coupling.

Recently, a nuvber of attemptsl3-17 have been made to apply finite
difference techniques ¢o the calculation of the properties of these type
flows. The calculations are capable of predicting the development of
the wuzzle gas flow in great detail; however, the accuracy and validity
of these calculations must be compared with experiment. At present, the
body of quantitative data relating to the muzzle flow field is extremely
limited. This repcrt presents the results of an experimental survey of
the muzzle flow about a 5.56mm M-16 rifle firing standard ball ammuni-
tion. The technique used is time resolved spark shadowgraphy. Detailed
+rajectories of observable discontinuities are constructed. An analytical
techrique is presented which permits vhe reduction of the data so as
to produce property profiles.

I1. EXPERIMENTAL APPARATUS AND TEST TECHNIGUES

Data was taken of the phenomena about the muzzle of an M-16 rifle
firing ball ammunition. The weapon has a nominal muzzle diameter of
5.56mm, a barrel length of 470mm, and a twist of rifling of 1 turn in
305mm, The ammunition fired was from a single lot, number FA 565. The
projectile was ball M-193 weighing 54.1 grains with a length of 19.1lmm.
The propellant was 27.5 grains of WC 846. The muzzle velocity was
measured to be 945 meters per second.

Since data was to be obtained optically, a technique was required
which provided penetration of the muzzle gas jet without suffering from
ov=: zxposure due to muzzle flash. Of the several techniques avail-
ablv'8, a spark shadowgraph approach was selected which uses back-
lighting in conjunction with a Fresnel lens to reduce exposure, Figure 2.
The tecnnique places a spark source and the object of interest on one
side of a Fresnel leas. The spark source is beyond the focal point
while the object of interest is between the focal point and the lens.

In this manner, the light from the source is fcrused at a point on the
opposite side of the lzns while the luminosity ‘xom the object of

interest is diffused away. The camera is posiiiored with its objective
lens at the source image point and is focused on the plane of the Fresnel
lens. In this manner, shadowgraphs may be obtained using the spark to
provide stop-action without ovarexposing the film in the open shutter
camera. To provide sufficiert light for optical penetration of the muzzle
gases, a unique circuit design was developed for the opsration of an air
gap spaxk source.

The typical ballistic range spark source is desipgned to minimize
inductanre through cne coaxial mounting of cap ~itors. This provides a
beight source or approximately 0.5 microsecond duration. To increase the

13
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source strength while maintaining the spark duration of such a source
requires careful component selection and circuit design. An alternative
appreach to the construction of a higher energy circuit is thz incorpo-
ration of a current interrupter. The circuit is illustrated in Figure 3.
A 0.5 microfaiad capacitor charged to 8.5 kilovolts is fused through an

exploding wire in series with an arc light source. The wire is selected!?®

to vaporize at the first quarter cycle peak, thereby opening the circuit.
The cold resistance of the wire is low. The resistance increases out of
phase with the current flow rising sharply near the quarter cycle peak
where the wire explodes. This provides for minimal diminishment of the
power delivered across the arc during the light output period. A com-
parison between the typical behavior of the fused and unfused circuits
is shown in Figure 4.

To investigate the effectiveness of this source, a qualitative
measurement of the light output of the arc was made for the cases with
and without the exploding wire. It is recognized that a more valid
comparison of sources would be between this source and a typical coaxial
capacitor type; however, this will provide an illustration of the prin-
ciple involved. Figure 5 shows the two output curves taken from an
uncalibrated phototube. The advantage of the fuse shut off is readily
seen. The source with the exploding wire decreases from the peak lumi-
nosity much more rapidly than the other source. This technique allows
for the construction of high intensity, short duiation arc light sources
with locaily available materials and relatively simple circuitry. It
must be noted that the effects of ionization within the air gap may limit
the intensities and duration of light output.

It is advantageous to obtain multiple photographs of one firing;
therefore, a set of three spark sources was used in each test., Using
the Cranz-Schardin method!®, it is possible to obtain multiple, sequen-
tial shadowgraphs of a single event. The basic approach is to place an
array of sparks on on~ side of a lens and to focus them on the objective
lenses of a complimentary array of cameras on the opposite side of the
lens. Either shadow or schlieren photographs may be obtained from the
apparatus which essentially is identical to the schematic shown in
Figure 2 with the addition of multiple sparks and cameras. By adjusting
the delay between spark firings, a sequential history of the events of
intevest is obtained, The number of photographs taken in this manner
is limited by the geometry and physical dimensions of the spark and
photographic equipment and by the dimensions and quality of the main
lens.

In the current tests, three sequential photographs are obtained
from each firing. The experimental apparatus and pertinent dimensions
are snown in Figure 6. A set of three photographs of a single firing
are shown in Figure 7. The sequence shows the precursor flow field,
the propellant gas flow field at early time (projectile in residence),
and the propellant gas flow field at late time. Photographs mav be
obtained at any time Jesired through adjustment of the spark pap

14
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triggering apparatus. Triggering is initiated by the interruption of

a light beam passed across the muzzle of the weapon. The interruptiou
is sensed at a photoamplifier with its sensitivity adjusted such that
the arrival of the precursor tube gss flow provides the initial sensed
interruption. The output signal of the photcamplifier is fed into a

set of time delay generators which permit the firing of the spark gaps
at delays of from 0-10,000 microseconds. The delays are preset such
that the spark gaps fire in .he desired sequence. The times of sparx
firings are measured »y looking at the gaps with photodiodes and record-
ing the signals on counters. Thsse counters have a least count of + 0.1
microsecond. Once testing was initiatel, it was possible to set the
triggering apparatus such that an event could be photographed to within
5 microseconds of the desired time.

To construct a time-displacement histoxy of observable discontinuities,
a test technique is used which gives a reliablz time base to the sequence
of three photographs and permits the correlation of data from various
firings. The basic assumptions of the technique are that the pro-
jectile velocity is constant during its travel through the muzzle gases
and that the projectile velocity is consistent from shot to shot. Once
these assumptions are made, it is necessary to insure that at least one
photograph in each sequence of three contains an image of the projectile.
By measuring the distance between the projectile base and the muzzle
of the gun, a reference distance is obtazned. Division of this distance
by the known muzzle velocity yields a reference time (this approach
was used by Smith!0 in a multiple-exposure application). In these tests,
time zero is defined as the time when the base of the projectile separates
from the muzzle of the gun. Once the reference time for one photograph
of the sequence is obtained, it is a simple matver to use the measured
intervals between spark firings to obtain the time of each photograph
relative to the defined time zero. To illustrate this procedure, con-
sider the photographs shown in Figure 7. The center photograph contains
the projectile which is a distance ¢f 156mm (measured to the projectile
base) from the muzzle. Division by a reference projectile velocity of
945 m/sec yields a time for this photograph of 165 microseconds. The
measured time intervals of the other photographs to the reference photo-
graph are - 185 and + 1035 microseconds. Thi: yields times of ~20 and
+ 1200 microseconds, respectively, relative tu time zero. Variation of
these delays permits the construction of a complete time history of the

gun emptying process.

The accuracy of this technique depends heavily upon the validity
of the basic assumptions. While no measurements of projectile accelera-
tion in the - :zle flow are available, estimates?9’2! of the incremental
velocity inc.v _se through this region have heen attempted. Both estimates
rely on the assumption that the projectile is subject purely to linear
acceleration in the muzzle flow with no change in its spin rste. A
comparison of the measured spin rate with that predicted from the kuown
twist of rifling and measured velocity indicates that the projectile

15



velocity had to increase b) approximately one percent through the muzzle
flow. It has been shownl? that the gasdynamic forces on the projectile
are maximum near the muzzle decreasing to negligible values within two

or three calibers of the muzzle. Therefore, the projectile is accelerated
near the muzzle and remains at a nearly constant velocity through the
remainder of its flight through the muzzle gases. For this reason, the
reference velocity is caken to be that value measured in the first thirty
calibers of travel. Thic velocity was measured using the described triple
shadowgraph apparatus in a series of ten firings. Spark triggering delays
were set such that the projectile was in each photograph. The consistency
of projectile velocity from shot to shot was measured to be rius 0> minus
one percent of the .uaunal value of 945 m°ters per second. This value

is similar to that measured in other studies??. Thus, both of the sourc-s
of error are on the order of one percent of the nominal projectile velocity
which transforms to a variation between real and measured time of + 0.1
microseconds per centimeter of projectile travel. This value is of the
same order as the counter accuracy and well within the 0.5 microseccnd
duration of the spark source. Thus, velc~ity variation is not expected

to be a significant source of experimental inaccuracy. Data shown in

the subsequent sections will demonstrate the overall validity of the
measurement technique.

III. RESULTS

More than sixty rounds were fired in the test program resulting
in apnroximately 200 photographs for analysis. In ordcr to obtain an
initial display of the data, the motion of the observable discontinuities
along the axis of symmetry was plotted. Figures 8 and 9 show the data
taken of the precursor flow, i.e., tube air forced out ahead of the
projectile, and propellant gas flow, respectively. The plots sbow the
motion of the normal shock (Mach disc), contact surface and free air
blast along the axis of symmetry (bure line) versus time measured from
the instant the projectile base clears the muzzle. The data is seen
to be consistent and repeatable. It should be noted that only three
photographs are taken of a single shot; therefore, these plots are a
composit: of many firings and indicat» the validity of the assumptions

T of the experimental techuique. From these plots, a sequence of 31

0 photoeraphs was selected as being representative, Figure 10, The
. photographs clearly show the growth of the precursor flow, the appearance
o of the projectile at the muzzle, the release and growth of the pro-

pellant gas flow, and the decay of the propellant gas jet. In this
report, the discussion of these features of the muzzle flow will be
divided into three¢ phases: Precursor Flow Development, Propellant Gas
Flow Development, and Quasi-Steady Propellant Gas Jet Decay.

A. Precursor Flow Development
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The precursor flow forms as tube zases are pushed out of the gun
bore by the moviny projectile. These gases are composed of air and residwal
and leaked propel.ant gases. Since the current tests involved sin’ e
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firings with relatively long times between shots, the amount of residual
propellant gases present in the gun tube is minimal. Additionally, for
the weapon considered in these studies, leakage is not significant and
will be neglected. Thus, the precursor flow is composed of the air
present in the gun tube ahead of the projectile. The calculation of

the properties of this air as it is set into motion by the accelerating
projectile is a straightforward problem of one-dimensional gasdynamics.
Oswatitsch!? used the method of characteristics coupled with the Rankine-
Hugoniot relations to construc* the flow in front of projectiles for
voth subsonic and supersonic }wunch velocities. A schematic of the flow
development for supersonic launch is shown in Figure 11.

As the projectile accelerates, compression waves move ahead of it
into the tube air. These waves rapidly coalesce into a shock which
gains in strength as more compression waves reach it. Since the shock
strength varies as it muves down the gun tube, entropy gradients obviously
exist in the slug of accelerated tuve air. However, Oswatitsch!Z points
out that an adequate approximation of the properties of the gas behind
the shock upon arrival at the muzzle can be obtained under the assumption
that the gas velocity is equal to the projectile launch velocity. The
remaining properties are calculated by applying the Rankine-Hugoniot
relations. He bases this upon the fact that for high speed projectiles,
the most significant accelerations occur near the breech leaving the
projectile velocity relatively constant over most of the latter portion
of its in-bore trajectory. Using this approximation, the variation of
precursor gas properties at the muzzle are calculated and plotted as a
function of projectile launch Mach number, Figure 12.

This figure shows the variation of the pressure and Mach number
of the jrecursor gases and velocity of the precursor shock as the pro-
jectile launch Mach number changes. The pressure of the precursor gases
increases rapidly with the projectile launch velocity. Thus, for high
velocity launch, tube air back pressure on the projectile can be signifi-
] cant. The precursor gas Mach number becomes unity for a projectile launch
. ¥ Mach number of 1.35. Once these gases reach a sonic velocity, signals
"k generated at the muzzle can not propagate back up the tube; thus, the gas
G oF properties remain constant until the projectile reaches the muzzle. The
r launch Mach number of the current tests is 2.74%. For this value, the
) precursor gas pressure is 15 atmospheres, the Mach number iz 1.48, and
c§ the shock leaves the muzzle at a velocity of 1240 m/s.

o As the precursor gas {lows from the muzzle, it expands two-dimension-
. ally forming an underexpanded, supersonic jet. The growth of the pre-

§ cursor jet displaces the surrounding air generating a nearly spherical
ot blast, Figure 10. The development of ihis type flow has been examined _
.o in connection with shock propagation from the open end i shock tubes23726,
These studies show the initial expansion of the gas to be quite complex.
¢ Two-dimensional, unsteady expansions propagate intc the flow from the
edge of the muzzle, Figure 13. These waves move along the shock front
o turning the flow behind it away from its purely axierl direction. In the

: .
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precursor flow, thesc waves form into the stationary wave structure

of a steady jet. While along the precursor boundaries and in the blast
field, a highly unsteady flow continues to exist. The blast is seen to
propasate into the atmosphere in a nearly spherical manner. In fact,

the spark shadowgraphs, Figure 10, indicate that the Mach disc, contact
surface, and blast form concentric spherical surfaces during the early
growth of the precursor flow field. As the blast expands radially, its
strength diminishes due to the deposition of its energy into a geometrically
increasing volume of air. The data shows the effect of radial expansion,
Figure 8.

The initial disconcinuity velocities decrease rapidly until the jet
normal shock (Mach disc) becomes stationary, the contact surface slows to
a subsonic velocity, and the blast diminishes in strength and propagates
at the sonic velocity. It is of interest to compare the location of
the precursor jet Mach disc with the location predicted by steady jet27-28
correlations. For steady jets, the following empirical relation applies
for Mach disc location:

Yo P, %
X _ € ey ;
5 = 0.70 Me ( o )
our computations give:
M = 1.48;
e 3
pe/p°° = 15.0;
Yo = 1.4;

substitution gives a steady Mach disc iocation
X/D = 4.75;

Figure 8 shows the Mach disc experimentally resches a steady state
X/D = 5.50.

v 3 The difference of 0.75 calibers or 4.17mm may be attributed to two
Lk effects. First, the muzzle values used are based on an assumption of
SN constant entropy throughout the precursor gases. Obviously, this is
not the case. The projectile increases in velocity at a finite rate
y thereby causing the shock strength to increase from zero to some finite
’ value., This creates an entropy gradient in the flow which corresponds
to a flow Mach number decrease from the projectile to the precursor
P shock. Since the gas flowing through the Mach disc at late cimes is

" the gas neavast ths projectile, the exit Mach number would be greater
o than the above value. The second effect is th¢ interaction between the
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blast and jet flows. The surroundings seen by the precursor jet is
part of a blast field,making the assumption of atmospheric pressure
of ¢ =»stionable validity. Since a typicai property of a blast flow is
overexpansion behind the lead shock wave, the pressure sensed by the
jet cou d be lower than atmospheric. Obviously, this would have the
effs :t moving the normal shock further from the muzzle.

if the time-displacement histories of Figure 8 are plotted logarith-
mically, an interesting result is obtained, Figure 14. The data is
plotted in a time scale which commences when the precursor shock first
breaks the muzzle at roughly -100 amicroseconds. The following power laws
are seen to apply:

xMach Disc ~ to’625

xCont. Surf.n t0'727

xBlast " t0.767

This type of power law variation when combined with the overall spherical
nature of the flow is strongly suggestive of the applicability of blast
wave theory to this flow.

To obtain a comprehensive view of the overall flow development,
discontinuity contours are constructed at selected time intervals,
Figures 15A - 15C. Of particular interest is the development of the
precursor jet structure, Figures 15A and 15B. The figures show the
strong tiae dependence in the longitudinal direction; however, once
established, the lateral structure remains unchauged over the observed
jet lifetime. A simple explanation would be to claim that since the
flow inside bounding shocks is supersonic, no downstream disturbances
are sensed upstream. However, this explanation neglects the fact that
the surrounding air can carry signals around the jet periphery. What
the data seems to indicate is that such signals are extremely weak and,
further, that the pressure in the lateral portion orf the blast field
rapidly decreases 1o a nearly constant value soon after the precursor
flow commences. This data demonstrates the applicability of steady jet
theory to the flow between the muzzle and the Mach disc. To account

4 for the motion of the Mach disc, an analysis of the blast layer is required.

ot The data corroboxates an identical conclusion made by Cswatitschl2,based
on a theoretical analysis, showing that the flow upstream of the Mach disc

e could be treated with a quasi-steady jet tasory. 7he quasi-steady nature
[%’ of the solution is brought about by the dvp” ndence cf jet properties upon
[ conditions existin:y at the muzzle of the gen. In t.e present case, the

Lﬂg° muzzle flow properties are nearly cuastamt. Even for the propellant gas

efflux, it will be shown that the muzzle propsrties vary at a rate much
slower than the rate of signzl pxopagation through the jet.
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The final figure 1n the sequence, Figure 14C, shows the devclopment
of the precurser blast. At early times, the effect of the flow momentum
is seen in the blast shock structure. Since the majority of the flow
momentum is concentrated along the axis, the cnergy imparted to the blast
is greatest in that vicinity. Thus, the blast velocity is highest near
the axis dropping off around its periphery. However, as the blast grows,
the effect of the jet structure becomes less obvious. At late times,

the blast wave is spherical in shape and propagates at the sonic velocity.
The later contours are incomplete due to the arrival of the propellant gas
flow. When the propellant gases are released, they rapidly expand effec-
tively destroying the precursor flow structure.

B. Propellant Gas Flow Development

Prinr to release, the propellant gas velocity varies from zero at
the breech to that of the projectile at the muzzle. While the projectile
launick velocity may be supersonic relative to the atmospheric speed of
sound, the high tcmperatur. of the propellant gas results in a speed of
sound which may be three or four times greater than the ambient valuelZ?.
For the M-16 used in these tests, thke Mach number of the propellant gas
at the base of the projectile is approximately 0.7. Thus, when these
gases are released, an expansion propagates back up the gun tube bringing
the muzzle velocity to a sonic value. The velocity remains scnic until
the gun tube is nearly exhausted. The calculation of the gas properties
at the muzzle during the gun tube emptying is not tractable using standard
interior ballistic techniques. However, Celmins2® has performed a method
of characteristics computation which produces consistent results, Figure 16.

The plot of velocity at the muzzle versus time shows the effect of
the one-dimensional expansion to sonic velocity., The gas arrives at the
muzzle with the velocity of the projectile. Immediately upon release, it
expands to a sonic velocity. Thereafter, the velocity and temperature
decrease while the Mach number at the muzzle remains at unity. The second
plot shows the variation in muzzle pressure with time. Since the Mech
number is one, the muzzle velocity and pressure plots are sufficient tc
compute all other gas properties given that y = 1.24 and R = 325 m2/s2 °k.
Using a giezoelectric gage3C installed at the gun muzzle, Baran and -
Brosseau3! obtained measurements of the muzzle gas pressure during the
emptying process, Figure 17.

The pressure is non-dimensionalized with respect to atmospheric and
plotted against time on a semi-log scale. A sample data trace is included
in the plot to’'show the noise level present in such measvrements. Data
readings were taken from the midpoint. of the trace at a given time;
however, there is considerable latitude for the selection of this value,
especially at early time, With this in mind, the agreement between the
theoretical and experimental values 15 quite good. Alsc shown on the
fignre is the extent of projectile residence in various portioms of the
propcllant gas flow. It is apparent ‘hat over the periods shown, the
muzzle properties are not strongly vacying. Additionally, steady jet
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theory32:32 chows that at these high pressure ratios, the jet structure

is only weakly effected by p*essure ratio variation. Again, this supports
the contention of Oswatitschl? that within the muzzie jet the flow is
nearly independent of time.

The motion of cbservabie discontinuities along the axis of symmetry
has been plotted in Figure 9. The data shuy the initial rapid prop-
agation of the propellant gss around the projectile. Radial expansion
causes the discontinuity velocities to drop off such that after 140
microseconds, the projectile penetrates the blast and passes into frec
flight. During the first twenty microseconds, the presence of the prn-
jectile significantly affects the flow field development. At uncorking,
the propellant gas is forced to expand around the projectile and into
the precursor flow field. This expansion and the velocity field of the
precursor flow seem to prevent the forward portion of the blast from
building in strength until the precursor flow has beer. completely engulfed
by the propellant gases, e.g., see Figure 10 shots of -3 through +37
microseconds. The detai’s of the interaction between the propellant and
precursor flows are difficult to see in the data. There are apparent
changes in the slopes of the propellant gas discontinuity trajectories
at 17, 27, and 65 microseconds when intersections with precursor dis-
continuities occur, Figure 9. However, obscuration of the phctographs
by dense powder gas prevents a reliable assessment of these interactions.
The trajectory of the normal shock is constrained by the projectile base
until 50 microseconds when it begins to separate and merge witl the Mach
disc. Subsequent to this time, the wotion of the Mach disc is governed
by the variation in the blast field pressure and by the Jdecay of the
muzzle pressure. The motion of the contact surface and blast do not
appear tc be dependent upon the projectile presence at late times;
however, the initial expansion of the propellant gases is controlled
by both the projectiie and the precursor ilow. The discontinuity tra-
jectories are plotted logarithmically in Figuve 18.

While the motion of the jet normal shock does not appear to follcw
a power law variation, the motion of the contact surface and blast cobey
the following:

X 0.445

Cont. Suxf. n~ t

X t0.608

Blast

. < 3
- o % «
O S

e

Erdos and Del Guidice3" p01nt out that for a constant rate of enexgy
addition, blast wave theory35:3% predicts a spherical, strong blast

Lég motion which obeys:
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i A similar ocbservarion was made by Buckmaster?® for the case of a cylin-
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examine the actual rate of energy efflux from the muzzle as predicted by

Celmins?%. Since he uses a one-dimensional flow model, the rate at which

energy passes the muzzle is:

2
u

_— e
E = Pe Uy (cv Te +-—79 Ae.

Under the assumption of a perfect gas:

P, = P RT,
¢ -c¢c_ =R,
P v

- l
ae - (YRTe) ’

the energy efflux may be expressed as:

. p.u
_‘e e y{y - 1) . 2
E = ToT1 1+ = Me ) Ae

For sonic exit velocities this reduces to:

Al -2,

Bep v Oy ) %

Define a parameter, £, as being the ratio of the energy which has
passed the muzzle up to time, t, to the total energy of the propellant
gases:

LR
g:-.._..._.——.
STE 4t
0
Where: T = time to gun emptying

Substituting foxr E and noting that y and Ae are constant:
* *

st p u dt
_ o
£ = 5

fo p u dt

* * . - - . 3

The variations of p and u with t'me are given in Figure 16. Per-
formance of the integration results i1 the plot of the variation of &

with time shown in Figure 19. During the first 100 microseconds, the
variation is seen to follow a nearly linear power law:
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Since

%% = -g'— % constant,
T

it is seen that the propellant gas energy passes the muzzle at a nearly
constant rate over the initial portion of the gun tube emptying. Thus,
it would appear that the observed data closely follows the predictions

of strong blast theory at early time.

The full contour plots of discontinuity location at selected times
are shown in Figures 20A - 207. Figure 20A depicts the growtl of the
jet shock structure. Like the precursor jet, the propellant gas jet
growth shows strong temporal variationc in the longitudinal direction.
The normal shock moves continuously away from the iruzzle for the first
300 microseconds. During this period, the intercepting shouck stiucture
remains unaltered once established. After 300 microseconds, the muezzle
pressure decay causes the jet structure to begin collapsing toward the
muzzle. This process will be treated in the following section. The
data indicate that while the projectile locates the pusition of the
noimal shock on the axis, the off-axis Mach disc structive forms due
to interaction between the jet and blast fields. After 91 microseconds,
the projectile no longer affects the internal shock structure of the jet.

Figure 20B plots the growth of the vropellant gas contact suriaces.
The jet grows rapidly in time again exhibiting relatively constant
lateral dimensions once they are estahlished. As long as it was in the
field of view of the cptics, the forward front of the jet wmoved down-
range. At late times, turbulent mixing caused the lateral dimensions
to growv very large; howesver, by this time, the supersonic jet core had
collapsed. Apparently carried by its o'm momentum, the turbulent "cloud"
moves slowly downrange, e.g., Figure 10, times 520 through 6400 micro-
seconds. While the presence of a vortex rin§ at the boundary of these
type flows is a well-documented factl»2> 7-12, 23-25  the turbulence
along the jet boundary prevents any inference of the details of its
growth and subsequent motion.

The hisrory of the air blast formed by the reiease of the propellant
gases is shown in Figure 20C. Due to leakage around the beat tail of
the projectile, the blast formation precedes the separatior. of the pro-
jectile base. The growth of the blast is most rapil in the downrange
direction. This is due to both the directed nature of the propellant
gas flow and the presence of the precursor gas velccity field. The
propellant blast continues to maintain its downrange strength for a
considerably longer pexriod than did the precursor gas. Oaly as it
passes from the field of view, does the blast begin to exhibit a roughly
spkerical nature.

Since the muzzle blast is composed of two interacting but distinct
type of flows, the propellant gas jet and the free air blast, it is of
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interest to use existing treatments of these flows to increase the amount
of information which may be acquired from the exverimental data. Owen
and Thornhi1137 use the method of characteristics to show that for steady,
supersonic, highly underexpanded jots, the flow properties within the
bounding shock structure are not effected by variations in the ambient
pressure. Tais conclusion is sugported by interfercmetric analysis of
air jets conducted by Ladenburg3®. Using a method of characteris?ics
code developed by NASA3%, N. Gerber of BRL computed the properties of

a sonic jet with y=1.25 exhausting at various pressure ratios, Figure 21.
The variation of the flow Mach number along the jet centerline is seen
to be unaffected by order of magnitude changes in the pressure ratio.
Thus, using the "universai jet core postulation of Owen and Thornhill,
all flow properties of the propel.ant gas jet may be evaluated in the
region bounded by the intercepting and normal shock waves. Further,
since the experimental data provides information on shock location,
velocity, and inclination, the Rankine-Hugoniot relations may be used

to compute shock jump conditions.

Also shown in Figure 21, is the centerline Mach number variation
computed by Oswatitsch!2 using the assumption that the propelliant jet
flow may be treated as a spherical source. Comparison with the method
of characteristics solution shows that the sourcz flow model predicts
a more rapid expansion from the muzzle properties, However, the two
analyses predict similar far field behavior. It is interesting to note
that Oswatitsch based this source model on a method of characteristics
computation which indicated that the jet streamlines diverge in a source-
like manner after initial expansion near the muzzle. Oswatitsch shows
that the center of this divergence is located 0.2 calibers ahead of the
muzzle; however, he locates the origin of his analytical source model
0.5 calibers behind the muzzle in order to provide a sonic exit flow.

It is noted that displacement of the source origin to the former location
(+0.2 calibers) would produce a predicted variation nearly identical to
that of the method of characteristics results. This is of interest since
the source flow solution is analytic whereas the method of characteristics
requires a numerical solution,

Having obtained a description of the jet flow propexrties, it is
necessary to obtain a method to treat the blast wave and contact surface.
The blast shock velocity may be obtained from the expeviriental data. The
Rankine-Hugoniot relations then permit the computation of the shock jump
conditions. The veiocity of the contact surface may also be measured;
however, there are no techniques available to compute the properties
of the gases on either side of this discontinuity. In summary, it is
possible to obtain information c¢n the gas properties from the muzzle
of the gun up to and on the other side of the j2t shock structure. The
gas properties behind the blast shock may be calculated, and the velocity
of the contact surface may be mcasured. How:zver, other gas properties
in the layer between the jet shock structure «nd the blast shock may not
be obtained. To demonstrate the procedure, a c.'culation of the gas
properties along the axis of sympetry will be peri.vmed.
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i The discontinuity velocities of the propellant gas flow may be
obtained by differencing the traces of Figure $. The resulting varia-
t.ons are shown in Figure 22. This phase plane representation shows
the velocity of each observable discontinuity versus axial location.
Lines of constant time are alsc indicated. Velocities are non-dimen-
sionalized with respect to the projectile velocity; thus, the initial
blast and rontact surface velocities are seen to be significantly higher
than the projectile velocity but drop rapidly in the axial direction.
At early times, the jet normal shock is seen to be fixed to the pro-
jectile base. Property calcullations are started at 80 microseconds
when projectile interaction ef:ects are minimal.

Using the calculations cf Celmins29, Figure 16, the muzzle prop-
erties at a given time are obtained. Gerber's results, Figure 21,
give the centerline Mach number distribution from which all other flow
properties may be computed using the isentropic flow relations and
known muzzle properties. The measured normal shock location and velocity
are coupled with the jet calculation and the Rankine-Hugoniot relations
to obtain shock jump conditions. The contact surface velocity is mea-
sured. From the shock relations and the measured blast shock losation
and velocity, conditions in the air just behind the blast shock are
computed. The velocity profile along the axis calculated in this
manner is shown in Figure 23,

The velocity increases rupidly from the muzzle value as the pro-

. pellant gases expand through tlic jet. At the moving Mach disc, the
velocity drops sharply and remains at a low level through the gas layer
between the Mach disc and blast shock. Since the centerline velocity
distribution changes slowly (acfected only by the muzzle property variation,
Fignres 16 and 17), the remaining plots of velocity distributicr show
nnly the behavicor in the xegion between the Mach disc and <ne blast
shock, Figures 24. Profiles for times from 80 through 240 microseconds
are shown. In all caces, the velo>3ty decreases from the Mach disc to
the contact surface due to radial expansion of the subsonic flow.
Between the contact surface and blast, a reversal in behavior occurs.
Initially, the velocity at the contact surface is higher than the gas
velocity behind the blast shock. After 120 microseconds, the contact
surface velocity drops below the gas velocity at the blast. This could
indicate a region of uncoupling where the blast flow is no longer
strongiy driven by the propellant gases and begins to decay more or
less independently.

The centerline pressure distribution was also calculated, Figure 25,

The pressure drops from the muzzle value extremely rapidiy. At the

Mach disc, the flow is veccmpressed, but to a pressure considerably
below that existing in the air at the blast shock. No data point is
shown for the contact surface since only its velocity is known, The
remaining pressure distyibutions in the gas layer between the two shock

: waves are shown in Figures 26. 1t is inteyrssting to note taat st 180
o5 . microseconds, the pressuce benind the Mach disc begins to drop below

&
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atmospheric, e.c., the ratio p/p°° becomes less than unity. This indi-
cates that the overexpansion typical of spherical blast fields is affec-
ting the pressure in the jet. Thus, while the blast shock may not be
sriven by the jet, it.is apparent that the jet semnses variation in the
blast field. This behavior will be seen in the subsequent discussions
on the propellant gas jet decay.

C Quasi-~Steady Propeliant Gas Jet Decay

fuxing the first 400 microseconds after the propellant gas release,
the sup« ~s,onic jet structure grows “o its maximum size. After this period,
the stxus'ure decays due to the decreasing muzzle pressure, Figure 16.
The motior ~f the propellant gas jet Mach disc along the axis of symmetry
illustrates this behavior, Figure 27. As previously indicated, the axial
position of ih» jet normal shock is constrained by the projectile base
for tl.e first 40 microseconds; thereafter, it separates from the pro-
jectile joining the jet Mach disc. The subsequent motion of the Mach
disc is govened by the blast field growth and muzzle pressure decay.
The time scaies »f these two phenomena are quite different. Radial
expansion of .;'e blast causes the pressure behind the blast shock to decay
from a value of upproximately 85 atmospheres at the muzzle (computed by
assuming the piapellant gases expand one-dimensionally into air from a
pressure correspaidirg to the stagnation pressure behind the projectile
just prior to exi:z) tt¢ 2.3 atmospheres in 200 microseccnds, Figure 26.
Compared to this order of magnitude variation in blast field pressure,
the muzzle pressure decvraiases from 600 atmospheres at time zero to 450
atmospheres in 200 micyi .conds. To obtain an estimate of how the Mach
disc motion is affected, ‘e empirical relation obtained for the Mach disc
location in steady jets is nseful:

*
Y, P
$=0.70 (2
) pw

%
)

*
In this case, the muzzle pressuve 's p and the blast field pressure is
the effective p_. Obviously, ths order of magnitude variation in blast
field pressure dominates Mach ¢ 1. l.cation at early times. Subsequent
to 200 microsecornds, the blast #i:)d ;. vessure can no longer decay by
orders of magnitude and the dec¢isa.e ot the muzzle pressure from 450
atmospheres, Figure 17, predomina‘&a.

The data shown in Figure 27 inaivate t:.ese trends. Also shown
on the figurz is the Mach disc locatiom as pr.dicted by the steady state
relation, 7The pressure ratio used correspenvs “o the values given by
Celmins?®, Figure 17. In reaching its maxisum separation from the muzzle
at 400 microseconds, the Mach disc overshoci: the velue predicted by
steady jet theory., This overshoot veflects t' & Inlilusnce of the blast
field overexpansion®*3% on the supersonic j¢. stxucture. For spherical
blasts in air, the momentum imparted to the g:set¢ yroc-.sed by the blast
field causes them to expand radially reacilns, pressurss be:ow atmospheric.
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atmospheric, ec.e., the ratio p/p_ becomes less than unity. This indi-
cates that the overexpansion typical of spherical blast fields is affec-
ting the pressure in the jet. Thus, while the blast shock may not be
jriven by the jet, it.is apparent that the jet senses variation in the
blast field. This behavior will be seen in the subsequent discussions
on the propellant gas jet decay.

C Quasi-Steady Propeliant Gas Jet Decay

furing the first 400 microseconds after the propellant gas release,
the supe ~,onic jet structure grows <o its maximum size. After this period,
the stxuvrure decays due to the decreasing muzzle pressure, Figure 16.
The motior ~f the propellant gas jet Mach disc along the axis of symmetry
illustrates this behavior, Figure 27. As previously indicated, the axial
position of ihe jet normal shock is constrained by the projectile base
for t'e first 40 microseconds; thereafter, it separates from the pro-
jectile joining the jet Mach disc. The subsequent motion of the Mach
disc is govevned by the blast field growth and muzzle pressure decay.
The time scales of these two phenomena are quite different. Radial
expansion of .iwe blast causes the pressure behind the blast shock to decay
from a value of zpproximately 85 atmospheres at the muzzle (computed by
assuning the piapellant gases expand one-dimensionally into air from a
pressure correspaiadirg to the stagnation pressure behind the projectile
just prior to exi:z) to 2,3 atmospheres in 200 microseccnds, Figure 26.
Compared to this order of magnitude variation in blast field pressure,
the muzzle pressure decrrases from 600 atmospheres at time zero to 450
atmospheres in 200 micxi .conds. To obtain an estimate of how the Mach
disc motion is affected, (%.e empirical relation obtained for the Mach disc
location in steady jets is nseful:
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X 'Ye p %
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In this case, the muzzle prevswve 's p and the blast fielid pressure is
the effective p_. Obviousiy, ths o~der of magnitude variation in blast
field pressure doninates Mach ¢ 158 lucation at early times., Subsequent
to 200 microseconds, the blast iit)d ;vessure can no longer decay by
orders of magnitude and the dec¢iga.e oi the muzzle pressure from 450
atmospheres, Figure 17, predomina* sz,

The data shown in Figure 27 inasvate t:ese trends, Also shown
on the figure is the Mach disc locativa as pr.dicted by the steady state
relation. The pressure ratio used correspons “o the values given by
Celmins2®, Figure 17. In reaching its maxisum separation from the muzzle
at 400 microseconds, the Mach disc overshooi: the vielue predicted by
steady jet theory. This overshoot weflects t & Inlfusace of the blast
field overexpansion35*39 on the supersonic j¢. stwvucture. For spherical
blasts in air, the momentum imparted to the y:ses proc-.sed by the blast
field causes them to expand radially reaciing pressurss be:ow aimospheric.
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disc or incandescent particles. Dust generation evolves through the
scouring action of the vortex ring and subsonic ject which continue to grow
both laterally and longitudinally even after the gun is cmptied.

IV. Conclusions

A set of experiments were conducted using an optical technique
which permits the construction of accurate time-displacement histories of
obcervable discontinuities about the muzzle of an M-16 rifle during firing.
The data give a detailed description of the flow structure and permit
development of selected property rrofiles. While both the precursor and
propellant gas flows were observed, this section will consider the saiient
conclusions which may be drawn from the propellant gas data.

As it develops immediately after prcjectile launch, the propellant
gas flow is composed of two distinct, but interacting, flow fields; a
supersonic, propellant gas jet and a free air dlast. The development of
the propellant gas jet boundaries with time is shown to occur anisotropi-
cally., In the longitudinal or downrange direction, the jet boundaries
grow continually for the first 400 microseconds. However, during this
same period, the lateral jet boundaries remain invariant once established.
This behavior is directly related to the blast field, In the Jomgitudinal
direction, a strong blast is generated; while in the lateral directions,
the blast is weak and decays rapidly. After 400 microseconds, the blast
and jet fields are weakly coupled, finally decaying independently after
800 microseconds,

Based on the experimental data, a model is proposed which permits
the computation of property values. The basic assumption of the model is
that within the bounding shocks, the propellant gas flow may be treated
as a steady, supersonic jet. Using established models of the gun tube
emptying and supersonic jet, all flow properties within the bounding
shocks may be computed. From the experimentally determined shock locations,
inclinations, and velocities, the jet properties are combined with shock
jump relations to obtain property values in the shock layer. At late
times, the experiments indicate that the propellant gas jet may be accurate-
ly modeled using steady jet theory.

The work also indicates areas requi¥ing further study. At very early
times, the initial unsteady expansion of the propellant gases around th:
projectile is not tractatle with existing jet theory, Additionally, the
interaction of the propellant gas and precursor gas flows should be
considered, Also, the mixirg of propellant gases with air and subsequent
chemical kinetics is a problen of interest in the generation of flash.
The late time motion of the subsonic jet and vortex rinyg are important
if dust scouring is to be investigated, Finally, it should be emphasized
that this data was taken from firing a single weapon under set conditions.
The conclusions to be drawn from such a study require checking under
different firing conditions. For this reason, future testing is planned
on the M~-16 and othor woapons under a range of launch conditionms.
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